
Emails 3.1.0

Overview
Emails

Annotations
Template driven
CMS driven
Mixed approach
Configuring recipients and suppressing emails SaaS

Overview

Emails can be configured as templates much in the same way as normal web page templates. Alternatively they can be managed via CMS
by creating content objects that hold email body, property configurations and embeddable media files.

Default theme implementation provides following email templates:

Theme Template Condition Customer Callcenter System

admin adm-passwd Admin password email

default adm-cant-allocate-product-qty Failed standard allocation

default adm-order-canceled Order has been cancelled

default adm-order-confirmed Offline payment order is confirmed by call centre operative

default adm-order-delivery-allocated Allocation for delivery has been completed, delivery can be packed

default adm-order-delivery-inprogress Shipping is in progress for a delivery

default adm-order-delivery-inprogress-wait Online payment on delivery mode, where something prevents
payment from completion. Delivery is waiting for payment to be
collected before proceeding with shipping.

default adm-order-delivery-packing Delivery is being assembled at warehouse, marked by warehouse
operative

default adm-order-delivery-ready Delivery ready for shipment, marked by warehouse operative

default adm-order-delivery-ready Delivery ready for shipment, marked by warehouse operative.
However shipping requires payment to be processed.

default adm-order-new New order has been placed.

default adm-order-payment-confirmed Call centre operative confirmed payment and order can be
processed.

default adm-order-returned Call centre operative processed order return.

default adm-order-shipping-completed Call centre operative marked that delivery has been completed.

 This can also be done using third party delivery tracking
services.

default adm-order-wait-confirmation New offline payment order is placed and awaits action by call centre
operative.

default adm-payment Online pre-payment for an order has been successfully processed.

default adm-payment-failed Online pre-payment for an order has failed.

default adm-payment-shipped Online payment on delivery for an order has been successfully
processed.

default adm-payment-shipped-failed Online payment on delivery for an order has failed.

default adm-refund Online refund for an order has been successfully processed.

default adm-refund-failed Online refund for an order has failed.

default adm-newsletter-request Notification sent via . Newsletter form

default adm-contactform-request Notification sent via . Contact us form

default customer-change-password Customer password reset.

default customer-registered Customer registration confirmation.

default order-canceled Order cancellation.

default order-confirmed Order confirmation for offline payments.

default order-delivery-readytoshipping Order is ready to be shipped.

default order-delivery-shipped Order is shipped.

default order-new New order placement.

default order-returned Order returned.

default order-shipping-completed Shipping completed when marked by call centre operative.

 This can also be done using third party delivery tracking
services.

default payment Online payment confirmation (pre-paid).

default shipment-complete Online payment confirmation (payment on delivery).

Emails

https://docs/display/YD/Home+page+3.1.0
https://docs/display/YD/Contacts+page+3.1.0

Annotations

Element Template Configurations1 Content
include2

Description

C.1
To/From

 From email is defined at shop
level using
"SHOP_ADMIN_EMAIL".
Emails addressed to call centre
also use shop level using
"SHOP_ADMIN_EMAIL".
Emails to customer use
customer email from customer
profile

 To/From settings

C.2
Subject

 Template driven emails will use
property file with key "subject".
CMS driven emails will use
property config content with
key "subject".

 Subject of the email. Order updates emails are prefixed with order number.

C.3
Message
body

 Message body can contain HTML or plain text message. Body templates features
Groovy support so dynamic elements can be present in body as well. Message
body can be defined in templates or as shop content with special URI.

C.3.1
Embedded
objects

 Message body allows to define placeholders for embedded objects such as
images. This technique allows to provide all media together with the message
thus providing a complete look without need for internet connection.

1Configurations refer to and custom attributes that define behaviour of componentsshop category
 include refers to shop URI suffix for content. For example if shop has code "SHOP10" and content include is specified as2Content

"custom_content" then URI of the content include that will be rendered is "SHOP10_custom_content"

Template driven

Template driven emails work much in the same way as regular page templates and are subject to the same inheritance rules as regular
templates. Therefore email templates can be defined per theme. Note that content managed email templates have higher priority than regular
theme chain (see section below).

All theme templates are defined within "theme/mail" module. Each email template bundle consists of a number of resources:

Embedded resources contained within resources sub directory. Each embeddable resource file name must match the placeholder name
in the email body template.
Property resource which defines static configurations for template (usually subject). The property files must be named with same base
name as template bundle followed by underscore and then by language code. For example if bundle is "adm-cant-allocate-product-qty"
then for English version there must be a file named "adm-cant-allocate-product-qty_en.properties".
HTML body resource which defines the message body for HTML messages. HTML format is preferred method as it allows greater
flexibility in styling emails and using multimedia. The HTML file must be named with same base name as template bundle followed by
underscore and then by language code. For example if bundle is "adm-cant-allocate-product-qty" then for English version there must be a
file named "adm-cant-allocate-product-qty_en.html".
Plain text body resource which defines the message body for plain text messages. This is somewhat obsolete format but it is there if
someone needs to use it. Plain text file must be named with same base name as template bundle followed by underscore and then by
language code. For example if bundle is "adm-cant-allocate-product-qty" then for English version there must be a file named
"adm-cant-allocate-product-qty_en.txt".

Typical structure of email template bundle for four languages is depicted in figure 1.

Figure 1: Email theme template bundle "adm-order-wait-confirmation"

Ensure that embeddable files do not exceed the size of TMAILPART.PART_DATA column size otherwise Mail composer will fail to save
the message.

https://docs/display/YD/Shop
https://docs/display/YD/Catalog
https://docs/pages/viewpage.action?pageId=1345484

Contents of the property file is a key value pair list that can be seen in example 1.

Example 1: Properties "adm-order-wait-confirmation"

subject=Need order confirmation
from=shopadmin@demo.yes-cart.com

HTML message body file is the actual email itself and represents a mix of Groovy scripts and HTML (see example 2, note that some parts are
skipped by '...').

Example 2: HTML "adm-order-wait-confirmation"

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>YesCart pure e-commerce</title>
</head>
<body>

<table width="700" cellpadding="0" cellspacing="0">
 <tr>
 <td style="border: 1px solid #CEE3F6; border-bottom: 0px;">
 <!-- Embedded resource

-->
 </td>
 </tr>
 <tr>
 <td style="border: 1px solid #CEE3F6; border-top: 0px;">
 <table width="100%" cellpadding="0" cellspacing="0">
 <tr>
 <td width="2%"> </td>
 <td>
 Need confirmation for order $root.ordernum
at <a href="<%out.print(shop.getDefaultShopUrl())%>">$shop.name

 for $customer.firstname $customer.lastname
$customer.email
 <table width="100%" cellpadding="0"
cellspacing="0">
 <tr>
 <td> </td>
 </tr>
 <tr>
 <td colspan="2" align="left">Order
information:</td>
 </tr>
 <%
 def totalSum = 0;
 for (Object delivery : root.getDelivery()) {
 def deliverySum = 0;
 %>
 <tr>
 <td>Delivery</td>
 <td
align="right">$delivery.deliveryNum</td>
 </tr>

 ... <!-- Loop over deliveries within order to list
items -->
 <%
 totalSum += (delivery.price + deliverySum);
 }
 %>
 <tr>
 <td> </td>
 </tr>
 <tr>
 <td>Order total
(<%=root.currency%>)</td>
 <td
align="right"><%=totalSum.setScale(2,
BigDecimal.ROUND_HALF_UP)%></td>
 </tr>
 </table>
 </td>
 </tr>
 </table>

 </td>
 </tr>
...

</table>
</body>
</html>

Example above shows how image can be embedded into email using:

Note how "mail-head_jpeg" represents file name of the resource with full stop '.' replaced by underscore '_'.

Using Groovy constructs allows to reference various variables within template to include customer data and order details within the email body.

CMS driven

CMS allows to mimic the same structure for email template resources as in template driven approach. The configurations are exactly the same as
for file templates but are defined within content body of each resource.

Before attempting theme chain file system resource look up mail composer will try to resolve content object by its URI first. Email resource content
object has the following URI naming convention:

HTML, Plain text and Properties

[SHOP CODE]_mail_[BUNDLE NAME].[EXTENSION]

Embedded file

[SHOP CODE]_mail_[BUNDLE NAME]_[FILENAME]

For example for email bundle "adm-order-wait-confirmation" for "SHOP10" the following resources apply:

Resource name Content SEO URI Notes

adm-order-wait-confirmation.html SHOP10_mail_adm-order-wait-confirmation.html Use content body

adm-order-wait-confirmation.txt SHOP10_mail_adm-order-wait-confirmation.txt Use content body

adm-order-wait-confirmation.properties SHOP10_mail_adm-order-wait-confirmation.properties Use content body

resources/mail-head.jpeg SHOP10_mail_adm-order-wait-confirmation_mail-head.jpeg Use "CATEGORY_IMAGE0" attribute

Note that content does not need the _[language] suffix as content is a localisable object. Therefore language specific email template should go to
language specific content cody attribute.

Typical structure of email template bundle managed via CMS is depicted in figure 2.

Figure 2: Email CMS template bundle "adm-order-wait-confirmation"

https://docs/pages/viewpage.action?pageId=1345484

It can be observed that content can be arranged into hierarchy thus allowing better management of email templates. Content can be named to
business user convenience as only requirement is correct SEO URI.

Resulting email from the above configurations can be seen in figure 3.

Figure 3: CMS driven email

Email templates are for internal use only so all content has to have template variationinclude

Mixed approach

Email templates were designed to promote as much code reuse as possible by resolving each resource individually. This means that any part of
. Mail composer service will resolve eachthe bundle can be either theme resource file on file system or CMS content with SEO URI defined

resource to create a composite view.

With this in mind it is possible to define base template in themes and then override properties and header image in CMS, or use header and/or
properties from themes and define message body in CMS. There is no right or wrong approach and business users should use most convenient
method inline with business individual requirements.

Configuring recipients and suppressing emails SaaS

By default all emails are sent to shop admin email specified in the attributes. In edition of the platform shop has three additionalshop SaaS
attributes:

https://docs/display/YD/Shop

Attribute Purpose Example

Mail: Shop
admin
email
map

Allows to define emails of
recipients of email for
specific template

For example snippet below allows to direct new orders to fulfilment department and all confirmed
payment notifications to accounting.

adm-order-new=fulfilment@shop.com,

Mail: Shop
admin
email CC
map

Allows to define additional
recipients, so that copies of
email can be sent. This is
especially useful for reseller
sites, where copy of
confirmed order is sent to the
fulfilment company

For example which configuration below copies of new and confirmed orders are sent to orders@m
 (Note that an email is also sent to recipients in "Mail: Shop admin email map" asainshop.com

usual or to "Shop admin email" if not specified)

adm-order-new=orders@mainshop.com,
adm-order-payment-confirmed=orders@mainshop.com

Mail: Shop
customer
disabled
emails
map

Allows to suppress email
notifications to customers.
This is useful when you wish
to disable some email
notifications.

For example the following configuration disabled all shipping notifications:

order-delivery-readytoshipping=true,
order-delivery-shipped=true,
order-shipping-completed=true

	Emails 3.1.0

