
Content (CMS)
Overview

Page
Include
External CMS

Content management
SEO
Content body

WYSIWYG
Media repository YCE 3.5.0+
Using functions

URL include SaaS
Groovy scripts
Thymeleaf templates 3.6.0+

CMS Customisation

CMS (15:33)
Play
Part 1: Content Management System Overview

Overview

Content management system (CMS) allows to enrich e-commerce website with business driven content. Generally speaking this enrichment
encompasses the following functions:

Creation of content pages
Creation of content (chunks of pages to be used in templates of a used by shop)includes theme

CMS allows to create micro sites as well create navigation menus, promotion banners, customer messaging, which are specific to each shop
instance. Each content object can belong only to a single shop.

Whenever a new is created CMS section of admin is populated with an entry to access the root content object of the specificshop instance
shop instance. Child content objects can be attached to this root with child content objects of their own to form content hierarchies with
unlimited level of depth.

Page

The layout of the content page is determined by theme's content page template. Most commonly these templates include a fixed structure
with header, body section and footer. The body of the content object is inserted into the body section. Template is resolved from the content

 configuration of content object. Default theme defines two of such templates: and which use content body as template content dynocontent
 and respectively.plain HTML HTML with groovy scripts

However custom theme implementation can define its own content templates, which could use more complex rendering of pages.

Include

Include refers to a special configuration . The purpose of include is to specify internal content objects that arecontent template include
private (i.e. not available on storefront).

Main use cases are:

Grouping content in admin for better management
Creating a logical root of hierarchy (i.e. include content object can have public content objects children thus creating a public content
branch, effectively a microsite section)
Theme template includes - predefined zones in theme templates that allow configuration of page elements (e.g. meganav, footer, cart
page configurable elements)

External CMS

The platform content service engine does not force business users to use built in CMS. Users that have existing CMS (e.g. Alfresco, Adobe

https:///www.youtube.com/embed/bnKppGlGXrA
https://docs/display/YD/Themes
https://docs/display/YD/Shop

CMS) have two integration options:

Plug into the platform content service layer (via custom content service adapter) to retrieve content from their systems.
Use external CMS as their primary website engine and then use as data processing engine bypassing content and themesREST API
altogether.

Content management

CMS management is focused at managing content for a specific shop at a time.

There is option of browsing the content hierarchy of a shop or search using keywords. Search filter can also accept special characters that
instruct search to behave in a certain way (e.g. prefixing search with ^ would result in displaying content matching the search keyword and its
immediate children). Use the help button on filter to see more options available for searching.

https://docs/display/YD/REST+API

Content object editor has a number of tabs each containing function specific configurations.

Mian tab allows to move content in the hierarchy by changing the parent (more details on setting up hierarchies are in). Alsothis cookbook
content availability options can be set either temporal or by toggling disabled flag. Only available content will be publicly visible on frontend.

Localisation contains settings for content name that is displayed in menus and breadcrumbs.

Templates tab contains content template that defines how the content body is used.

Templates
*

Accessible
via URL

Rendering

content Basic layout of web page with content menu. Content body fills the middle section of the page

dynocontent Dynamic content is enhanced version of "content" that treats content body as template that can contain
variables and call custom functions.
Variables available to template depend on the theme.

include Content which is non accessible via public URL used to fill in placeholders in web pages defined by
theme.
Another usage is splitting content hierarchies into sub hierarchies for purpose of better content
management in YUM and creation of distinct microsites.

* Custom themes can include other templates for alternative render process

SEO - search optimisation engine configurations.

CMS - actual content that is used according to template configuration

Attributes/Images tag - for additional configurations that can be used by this content object

SEO

SEO tab allows full control over locale specific settings. Options allow to manipulate URI and meta tags.

https://docs/display/YD/Cookbook+-+CMS+Basics

Content body

Content body is optional and is reserved only for content objects that render content on storefront. Typically these are content pages and
content includes that are defined by templates.

At the top of the tab are locale toggle buttons. These buttons do not disable locales, they are used to show/hide language blocks to make this
screen a bit more manageable when working with large content bodies (to enable/disable shop locales see).shop configurations

Each language block has a heading bar with three tools: WYSIWYG editor, raw editor and preview. In addition to this it contains a language

https://docs/display/YD/Shop

label that is either green (for non empty content body) or red (for empty content body). This is useful when content body does not contain
visible element (e.g. scripts or meta tags).

Lower section of the content block shows a preview but it differs from the actual design. In order to see this body as it would be visible in shop
you must use tool. This tool includes the that contains full CSS bundle of the theme and thus will display HTML aspreview yc-preview.css
closely as possible to the end result. Because preview tool opens in a new window you can also resize it to see responsive design in action.

Raw data editor allows raw source manipulation and is intended for use by professional web designers in order to fine tune design and add
non standard attributes that may be used by JavaScript functions or other external tools such as Google tag manager or other analytics
engines.

WYSIWYG editor is intended for use by business users and has advanced features to allow user friendly web design experience. Insert
 function allows to insert predefined responsive templates to arrange blocks of HTML. User should familiarise with hot keys and tipstemplate

that can be viewed using in the editor.help button

WYSIWYG

By default this editor has toggled, which draws a dotted line around blocks of HTML (e.g. div, p, pre). This allows toShow block borders
visualise blocks of HTML and how they behave when size of screen changes. Green indicates desktop size, blue - tables and red - mobile.

Editor is displayed in a separate window, so it can be resized at any point to visualise how HTML reacts to different view ports.

Media repository YCE 3.5.0+

Note that working with blocks ENTER key creates a new line within each block. Thus to escape out of the block to add new one use
hot key "SHIFT+ENTER". Use help button to view full list of shortcuts and tips.

Media repository is integration for CMS WYSIWYG editor thatYCE
allows to browse uploaded media files. In open source version only
files and images that are attached as attributes to specific content
objects can be used by copying generated URI. This integration
allows to upload media unrelated to data objects and also browse
and select it from WYSIWYG.

CMS in Yes Cart (5:57)
Play
Part 2: Media Management

Using functions

If you recall in configurations we had an option of using . This type of template is an advanced version of content template dynocontent con
 template that treats the body not just as plain HTML but as a mix of HTML and Groovy script and/or Thymeleaf template . Thistent 3.6.0+

enables use of predefined functions and also some advanced scripting in the content to make the content dynamic (i.e. enriched with server
side data, such as product details, category details, cart details etc).

The following built in functions are available in core code:

Version Function Param Example

We strongly recommend using only for content that uses functions or scriptsraw editor

https:///www.youtube.com/embed/48GEmJ9l3TE

1.x.x include uri

Groovy style
${include('license')}
Thymeleaf style (3.6.0+)
<div th:remove="tag" th:utext="${include.func('license')}">Licence</div>

1.x.x contentURL
*

uri

Groovy style
License page
Thymeleaf style (3.6.0+)
License page

1.x.x categoryURL
*

uri

Groovy style
Notebooks
Thymeleaf style (3.6.0+)
Notebooks

1.x.x productURL
*

uri

{ fc, uri
} 3.7.0+

Groovy style
TS-231 + 2X ST2000VN001
Groovy style (3.7.0+)
TS-231 + 2X ST2000VN001
Thymeleaf style (3.6.0+)
TS-231 + 2X ST2000VN001
Thymeleaf style (3.7.0+)
TS-231 + 2X
ST2000VN001

1.x.x skuURL * uri

{ fc, uri
} 3.7.0+

Groovy style
ME181C-A1-WT
Groovy style (3.7.0+)
ME181C-A1-WT
Thymeleaf style (3.6.0+)
ME181C-A1-WT
Thymeleaf style (3.7.0+)
ME181C-A1-WT

1.x.x URL * uri

Groovy style
Home
Thymeleaf style (3.6.0+)
Home

3.7.0+ encodeURI uri

Groovy style (3.7.0+)
Home
Thymeleaf style (3.7.0+)
Home

3.7.0+ decodeURI uri

Groovy style (3.7.0+)
"${decodeURI('unsafe')}
Thymeleaf style (3.7.0+)

3.7.0+

 SaaS

filteredURL uri

Groovy style (3.7.0+)
"${filteredURL('extra/path')}
Thymeleaf style (3.7.0+)

* It is not necessary to use functions for links, you can simply use instead of Notebooks <a
. However functions become useful when you have multiple environments and some ofhref="${categoryURL('notebooks')}">Notebooks

them are not running from root (e.g.) but from a sub root (). In such setups above statedwww.mydomain.com www.mydomain.com/yes-shop
functions will automatically resolve "/yes-shop" and prepend it to all generated URLs

For technical users: custom functions can be injected into ContentServiceTemplateSupport through registerFunction so you can
add your own functions when customising content service API

http://www.mydomain.com
http://www.mydomain.com/yes-shop

URL include SaaS

URL include is an advanced feature of CMS rendering. It allows to include any arbitrary content by referencing it inside script tag ofSaaS
type . For example:yd-include

<script
type='yc-include'>/internal/custom/controller/?param1=value1¶m2=valu
e2</script>

This feature and serves a multitude of purposes.is not the same as include function from dynocontent template

include function runs within scope of content it was called from (i.e. like a script). So all parameters that are passed to included
content are exactly the same and thus there is a dependency on the parameter input in included. On the contrast url includes run in a
separate server side sub request and allows to pass additional parameters (e.g. param1 and param2 in the example above). There is
no limit on the parameters but only simple types can be passed (i.e. not objects) but plain text
url includes do not depend on dynocontent and thus can be included in any content anywhere thus allowing to embed custom
components. For example if you developed an element such as featured product gallery, on internal controller
"/internal/productgalery", which accepts a list of product SKU, then this component can be embedded anywhere in content by
reference and therefore any such gallery can<script type='yc-include'>/internal/productgalery?sku=SKU_A|SKU_B|SKU_C</script>
be placed in any content by simply including one line. See featured products sliders on demo which usehttp://edemo.yes-cart.org
this concept, the same component is included several times with list of SKU to generate different sliders of complete product pods
lastly url includes allow to fine tune page caching (a feature) or SFG implementation that boosts performance enormously by caching
chunks of generated HTML for given URI

Groovy scripts

Scripting is beyond the scope of this overview, see for more technical in-depth detailsthis cookbook

Thymeleaf templates 3.6.0+

Thymeleaf templates is beyond the scope of this overview, see for more technical in-depth detailsofficial documentation

CMS Customisation

CMS API exposed via service layer (namely ContentService) that provides an interface for all other services that are dealing with views.
Therefore it possible to override content service provider in order to customise the CMS whether to use custom implementation or to use this
service as proxy to external CMS.

Since it is possible to configure CMS provider via configuration. Your custom modules can be injected via and then3.6.0+ extension points
activated via system configurations (System > Configurations).

For example use of CMS.v3 can be like so: configured

We strongly recommend using only for content that uses functions or scriptsraw editor

We strongly recommend using only for content that uses functions or scriptsraw editor

http://edemo.yes-cart.org/
https://docs/display/YD/Cookbook+-+CMS+Basics
https://www.thymeleaf.org/
https://docs/display/YD/Extension+points
https://docs/display/YD/Configurations

CMS.contentService=contentServiceCMS3
CMS.dtoContentService=dtoContentServiceCMS3
CMS.contentFileNameStrategy=contentCMS3FileNameStrategy
CMS.contentImageNameStrategy=contentCMS3ImageNameStrategy

Using legacy CMS.v1 can be like so: configured

CMS.contentService=contentServiceCMS1
CMS.dtoContentService=dtoContentServiceCMS1
CMS.contentFileNameStrategy=contentCMS1FileNameStrategy
CMS.contentImageNameStrategy=contentCMS1ImageNameStrategy

https://docs/display/YD/Configurations

	Content (CMS)

