
Monitoring and tooling

Query API
Cache monitoring
Performance sensors SaaS 
Performance samples  SaaS 
Tasks  SaaS 
Storefront component rendering diagnostics SaaS 
Cluster
Application logs

Shop specific logging
ShopCodeLogDiscriminator

Query API
 

Most of the rendered data in storefront and Admin is an amalgamation of complex objects, which is many cases are heavily cached to ensure
good performance of the platform. In some cases when performing analysis it is required to get access to raw fresh data. Query API specifically
targets this problem.

Query API is not only concerned with persistence layer but a multipurpose tool which can be extended via extension point. Out of the box the
following API extensions are supported:

API Version Supported
Nodes

Purpose Example

SQL:Core  3.0.0+  ADM, API,
SFx

SQL interface for core RDBMS

select count(*) from TSKUPRICE

HQL:Core  3.0.0+  ADM, API,
SFx

Hibernate QL interface for core
RDBMS select count(s) from

SkuPriceEntity s

HQL:Payment  3.0.0+  ADM Hibernate QL interface for
payment RDBMS select p from

PaymentGatewayParameterEntity
p

IceCat:Product  3.3.0+  S
 aaS

ADM IceCat search interface to validate
product XML 72514951,72514952

FT:Product 3.0.0+ API,SFx Lucene full text query interface  

brand:toshiba name:w50

 

In order to perform a query over desired medium:

Select Node on which query to be performed
Select type of API to use and click "Add tab" button



Enter query in required formal and click "Play" button

Cache monitoring
 

For best performance each application node maintains local cache to reduce contingency on slow resources or speed up results of complex
calculations. Cache monitoring panel allows to view all active caches on all nodes in the cluster with corresponding statistics, which include:

Configuration parameters i.e. caching strategy and expiry timeframes
Declared size and active size - essential for detecting flooded caches (performance tuning)
Hit and Miss and efficiency ratio - essential for detecting inefficient caching (performance tuning)
Memory size - RAM usage indicators (scalability)

All declared caches are active by default. However if is possible to enable/disable individual caches at runtime.

Caches can be cleared all at once, or individually by selecting specific cache and clicking "Evict" button  

 

Evict all caches also features on the quick access buttons menu. This is an essential tool for development

Cache search has a number of "smart search" options to list flooded, most used and largest in size caches.



Performance sensors   SaaS
 

Performance sensors are fine detailed trackers or service layer API invocations.

Each sensor is Node specific and collects information on:

Total amount of time API is used - to identify execution hot spots
Invocation count of an API - to identify most used API (possible caching recommendation)
Average, min and max time - to identify resource contingencies and slow API



Performance samples    SaaS
 

Monitoring CPU and memory consumption in any given application may prove crucial in identifying performance bottleneck and resource
restraints.

Sampling nodes in cluster provides essential information about environment of each node: JVM used, CPU cores and load, memory consumption
and garbage collector stats. These metrics are invaluable when assessing resources required for the platform or any resource leaks.

Performance samples can also be downloaded as CSV extract for future reference.

It is recommended to constantly review this information and create new samples to prevent problems before that may occur

REST API can be used to feed this information into your environment tooling



Tasks    SaaS
YCE

The platform has several asynchronous recurring processes in order to maintain its functions such as order state machine, price calculations, data
maintenance, email processing etc. All schedules are declared in   which set the default rhythm for the platform, howeverconfig-cronjob.properties
in most production systems this rhythm requires some orchestration in many cases real time.   offers a dedicated monitoring panel where allSaaS
services on all nodes can be monitored, paused, triggered manually and re-scheduled at runtime.



Managing task schedules can be accomplished in three distinct actions:

Run task now - platform automatically calculates a one-off schedule to run task in 30seconds, after task has run manually it will become
unscheduled and not run anymore
Restore schedule - platform automatically will use the original schedule to from properties file
Reschedule - user is invited to change the cron expression to instruct the platform to perform task at a different schedule





Storefront component rendering diagnostics   SaaS
 

Storefront themes multiplied by complexities of CMS further obscured by vast variety of data and caching sometimes results in questioning why
page rendering has been done in a certain way? or why some components are not present on the page? or are present but should not be?

SFG   frontend application contains a setting to produce verbose output during page rendering. In order to enable this mode set   attributSaaS shop
e:  . This attribute can also be observed on the Overview tab. When enabled detailed information will beMaintenance: enable page render trace
printed out during rendering including:

Full path of the components rendered in the page
CMS elements included in the page
Rendering times
Caching information

https://docs/display/YD/Shop


Cluster
 

Cluster defines a network of applications (nodes). Cluster is either preconfigured or nodes are auto-discovered depending on the discovery
module used (either WebService, REST or JGroups multicast connector).



Each node declares cluster namespace it belongs to, type (ADM, API or SFx), mode of operation and whether it uses full text search module.
Along with this information cluster service can query each node to give full details of the build (i.e. all modules that are currently loaded).

Overview provided by cluster monitoring is vital in understanding platform infrastructure and composition of individual applications.

Application logs
 

All platform applications use   over SLF4j configuration. Capabilities of Logback a beyond the scope of this discussion and we highlyLogback
recommend reviewing logback official documentation if you are not familiar with this framework.

Shop specific logging

 Detailed documentation on clustering is available upon request

http://logback.qos.ch/


 

For multi-tenant setups it is recommended to sift logs by shop discriminator. Platform provides  several flavours of ready to use implementations: 

ShopCodeLogDiscriminator

Uses current shop context to set   variable, which produces value such as "SHOP10". This value can be used in file names to directshopCode
message of specific shop into a separate file.

  <appender name="SHOPPAY"
class="ch.qos.logback.classic.sift.SiftingAppender">
       <!-- declare discriminator -->
       <discriminator
class="org.yes.cart.utils.log.ShopCodeLogDiscriminator"/>
       <sift>
           <!-- shopCode can be use in appender name (e.g. view in JMX) -->
           <appender name="SHOPPAY-${shopCode}"
class="ch.qos.logback.core.rolling.RollingFileAppender">
               <!-- shopCode can be use in file name -->
               <File>${catalina.base}/logs/yc-${shopCode}-pay.log</File>
               <Append>true</Append>
               <encoder>
                   <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} %5p %c{1}:%L -
%m%n</pattern>
               </encoder>
               <rollingPolicy
class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
                   <maxIndex>10</maxIndex>
                   <FileNamePattern>${catalina.base}/logs/yc-${shopCode}-p
ay.log.%i.zip</FileNamePattern>
               </rollingPolicy>
               <triggeringPolicy
class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
                   <MaxFileSize>10MB</MaxFileSize>
               </triggeringPolicy>
           </appender>
       </sift>
   </appender>

ShopCodeAndLevelLogDiscriminator

Uses current shop context + log message level to set   variable, which produces value such as "SHOP10-WARN". This value can beshopCode
used in file names to direct message of specific level of specific shop into a separate file



 <appender name="DEFAULT"
class="ch.qos.logback.classic.sift.SiftingAppender">
       <!-- declare discriminator -->
       <discriminator
class="org.yes.cart.utils.log.ShopCodeAndLevelLogDiscriminator"/>
       <sift>
           <!-- shopCode can be use in appender name (e.g. view in JMX) -->
           <appender name="DEFAULT-${shopCode}"
class="ch.qos.logback.core.rolling.RollingFileAppender">
               <!-- shopCode can be use in file name -->
               <File>${catalina.base}/logs/yc-${shopCode}.log</File>
               <Append>true</Append>
               <encoder>
                   <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} %5p %c{1}:%L -
%m%n</pattern>
               </encoder>
               <rollingPolicy
class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
                   <maxIndex>10</maxIndex>
                   <FileNamePattern>${catalina.base}/logs/yc-${shopCode}.l
og.%i.zip</FileNamePattern>
               </rollingPolicy>
               <triggeringPolicy
class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
                   <MaxFileSize>10MB</MaxFileSize>
               </triggeringPolicy>
           </appender>
       </sift>
   </appender>

Out of the box logs
 

 

Log file(s) Sift Level Purpose

Storefront (API, SFx)  

yc-${shopCode}.log shop code + level INFO DEFAULT-${shopCode} appender (root)

yc-${shopCode}-pay.log shop code DEBUG SHOPPAY appender, payment gateway related logging, packages:

org.yes.cart.web.filter.payment
org.yes.cart.payment.impl
org.yes.cart.web.page.payment.callback

yc-orderexport.log   INFO ORDEREXPORT appender, order export related logging, packages:

org.yes.cart.orderexport

yc-orderstate.log   INFO ORDERSTATE appender, order transition related logging, packages:

org.yes.cart.service.order



yc-mail.log   INFO MAIL appender, email generation and send logging, packages:

org.yes.cart.service.mail.impl.MailComposerImpl
org.yes.cart.bulkjob.mail.BulkMailProcessorImpl
org.yes.cart.domain.message.consumer.CustomerRegistrationMessageListener
org.yes.cart.domain.message.consumer.ManagerRegistrationMessageListener
org.yes.cart.domain.message.consumer.StandardMessageListener
org.yes.cart.web.aspect.ContactFormAspect
org.yes.cart.web.aspect.NewsletterAspect
org.yes.cart.web.aspect.RegistrationAspect
org.yes.cart.service.domain.aspect.impl.CustomerRegistrationAspect
org.yes.cart.service.domain.aspect.impl.ManagerRegistrationAspect
org.yes.cart.service.domain.aspect.impl.PaymentAspect
org.yes.cart.service.domain.aspect.impl.BaseOrderStateAspect
org.yes.cart.service.domain.aspect.impl.OrderStateChangeListenerAspect
org.yes.cart.orderexport.mail.EmailNotificationOrderExporterImpl

yc-maildump.log   INFO MAILDUMP appender, log full content of email that was sent

yc-audit.csv   INFO AUDIT appender, log persistence updates audit records

 Change to TRACE to enable audit logging 

yc-${shopCode}-ftq.log shop code INFO FTQ-${shopCode} appender, logs all full text queries

 Change to DEBUG to enable query logging

 Change to TRACE to enable query explanations logging

yc-ws.log   ERROR WS appender, logs web services communication (WS.IN and WS.OUT)

 Change to INFO to enable logging

yc-config.log   INFO CONFIG appender, logs information on loaded modules and extension points

 Change to DEBUG to enable logging 

yc-${shopCode}-sac.log shop code DEBUG SAC (Security access control) appender, logs access violations

Admin (ADM)  

yc-${shopCode}.log shop code + level INFO DEFAULT-${shopCode} appender (root)

yc-${shopCode}-pay.log shop code DEBUG SHOPPAY appender, payment gateway related logging, packages:

org.yes.cart.web.filter.payment
org.yes.cart.payment.impl
org.yes.cart.web.page.payment.callback

yc-${shopCode}-job.log shop code + level INFO JOB-${shopCode} appender, logs all tasks executions, packages:

org.yes.cart.bulkjob
org.yes.cart.service.async.impl

yc-${shopCode}-import.log shop code + level INFO BULKIMPORT-${shopCode} appender, logs all data imports, packages:

org.yes.cart.bulkimport
org.yes.cart.bulkjob.bulkimport
org.yes.cart.service.async.impl

yc-remote.log   INFO REMOTE (file upload/download/move/delete operations) appender, logs all data imports, packages:

org.yes.cart.remote

yc-orderexport.log   INFO ORDEREXPORT appender, order export related logging, packages:

org.yes.cart.orderexport

yc-orderstate.log   INFO ORDERSTATE appender, order transition related logging, packages:

org.yes.cart.service.order



yc-mail.log   INFO MAIL appender, email generation and send logging, packages:

org.yes.cart.service.mail.impl.MailComposerImpl
org.yes.cart.bulkjob.mail.BulkMailProcessorImpl
org.yes.cart.domain.message.consumer.CustomerRegistrationMessageListener
org.yes.cart.domain.message.consumer.ManagerRegistrationMessageListener
org.yes.cart.domain.message.consumer.StandardMessageListener
org.yes.cart.web.aspect.ContactFormAspect
org.yes.cart.web.aspect.NewsletterAspect
org.yes.cart.web.aspect.RegistrationAspect
org.yes.cart.service.domain.aspect.impl.CustomerRegistrationAspect
org.yes.cart.service.domain.aspect.impl.ManagerRegistrationAspect
org.yes.cart.service.domain.aspect.impl.PaymentAspect
org.yes.cart.service.domain.aspect.impl.BaseOrderStateAspect
org.yes.cart.service.domain.aspect.impl.OrderStateChangeListenerAspect
org.yes.cart.orderexport.mail.EmailNotificationOrderExporterImpl

yc-maildump.log   INFO MAILDUMP appender, log full content of email that was sent

yc-audit.csv   INFO AUDIT appender, log persistence updates audit records

 Change to TRACE to enable audit logging 

yc-ws.log   ERROR WS appender, logs web services communication (WS.IN and WS.OUT)

 Change to INFO to enable logging 

yc-config.log   INFO CONFIG appender, logs information on loaded modules and extension points

 Change to DEBUG to enable logging 

yc-${shopCode}-sac.log shop code DEBUG SAC (Security access control) appender, logs access violations

yc-security.log   INFO SECURITY (Spring) appender, packages:

org.springframework.security


	Monitoring and tooling

