
Price rules
Overview SaaS 3.5.0+
Price calculation

B2B
Tag, Reference and Policy

Eligibility condition
Watch out for
Variables
Functions

Price rules tester
Price Rules Management
Working example

Business scenario
Price import
Price rules

Marketing tools (8:10)
Play
Price Rules

Overview SaaS 3.5.0+

Price rules allow large reseller businesses better manager their price lists by configuring a set of rules to transform raw prices to end
customer prices.

Typical use case is when reseller receives daily buying in price updates from suppliers which could contain thousands of products and it
simply is impractical to review the end customer prices on daily basis manually. Instead resellers can setup rules such as: "HP Notebooks
should be sold with 5% margin" or "All notebook accessories should be sold with 15% margin" which could be applied to buying in prices to
automatically work out the correct end customer price.

Another typical case is when resellers receive RRP as a daily update from their supplier and end customer price is discounted from the RRP
to give realistic customer prices. Example rule would be: "All cameras are sold with 10% discount from RRP"

Price rules management section allows to configure such rules and then transform the raw buying in prices into the end customer prices
automatically by running job.Price generator

Price calculation

When price generator job executes it scans all non-auto-generated prices (prices which do not have auto-generated flag). Each price is
evaluated by the using set of price rules configured for the shop the price comes from (as each price belong to a specificprice rule engine
shop).

Each rule has an which determines if a price is applicable for this rule and if it is the action of this rule is executed. Theeligibility condition
first applicable rule determines what happens to raw price in terms of action, which is why of the price is very important as multipleranking
rule could have condition which makes the price eligible but only the action of the first rule applicable is executed against the price.

The following actions are supported by price rules:

Action Behaviour Parameters used

Calculate Calculates end customer price using formula:

PRICE = RAW * (1 + MARGIN/100) + AMOUNT

Margin Percent - margin percentage (Can be
negative for discount calculation)

Margin Amount - fixed amount (Can be negative
for discount calculation)

Add tax - flag, when enabled tax is resolved an
added to generated price (e.g. when raw prices
are NET but shop works with GROSS prices by
default)

Rounding unit - minimal unit for "nice" prices
rounding.

https:///www.youtube.com/embed/T4lMnua2k5A

Request
for price

Behaves similarly to Calculate but also adds the request for price flag
onto the price. This flag prevents customer from seeing the price and
instead a label is displayed that they need to contact the shop for price
quote

Same as for Calculate action

Skip Ignore the price, which is useful to skip generation of customer price
(effectively saying we are not selling these products)

B2B

In B2B configurations sub shops inherit all price rules from the master shop but also can define additional rules. Typically this is used to
account for special conditions for sub shop, such as "Products from category X are not sold to this customer", or special prices such as
"Customers in this sub shop receive a larger discount".

It is also possible to restrict sub shop to use only its own rules by setting attribute to at sub shopSHOP_B2B_STRICT_PRICE_RULES true
level.

Tag, Reference and Policy

With and you have the option to set and on the generated price. are useful to trackcalculate request for price tag, reference policy Tags
the origin of the generated price as you can see tags on the generated prices in the price lists view once they are generated, thus rule that
caused the generation of this price can be easily identified. is a special field on the price which is copied over to the cart items andReference
later on to the placed order items (so it is like a sticky tag, which you will be able to see in order view). is special field on prices thatPolicy
allows to limit access to these prices to only customers that have this policy set on their profiles (effectively exclusive right to special prices).

Eligibility condition

Eligibility condition is a logic statement that allows to evaluate an input price and determine if it is applicable for given rule. Each condition
evaluates either to true or false. The condition syntax may seem somewhat overwhelming but in essence it is not much more complex than
learning Excel formulas. However if this syntax is mastered marketing manager can create some very powerful and complex conditions to fine
tune the pricing policies pitch perfect.

The eligibility condition editor provides helper functions for including a typical condition templates, looking up ID of categories and ID of
brands which can be used as variable in the condition function.

Watch out for

Eligibility condition is a boolean expression (i.e. expression that evaluates either to true or false) which represents the qualifying criteria for
price rule. Default rule expression engine is Groovy (a java library).

Since the expression written in Groovy here are some not so obvious things:

Comparing
values: A =

 B

Equals
operator is
"=="
(double
equals) or
.equals()

// Use double equals sign or .equals()
A == B
A.equals(B)

Complex
statements

The condit
ion is a

 andscript
can have
multiline
Groovy
code as
long as the
last line
evaluates
to true or
false

// Check item SKU is one in the list of promo SKU codes
def list = ['PROMOSKU001', 'PROMOSKU002', 'PROMOSKU003'];
list.contains(shoppingCartItem.productSkuCode)

Built in
variables

There are
some pred
efined

tvariables
hat can be
used in
expression

// customerTags is variable containing list of tags from
Customer profile
customerTags.contains('bigspender')

Using variables and Groovy syntax any condition can be written to represent price rule with conditions resembling a natural English language
sentences.

Variables

Variable Type Example Description

PRICE SkuPrice

// Pricing policy check
PRICE.pricingPolicy == 'COST_MAIN'
// Pricing policy check for all policies
starting with COST_
// '?' character must be used since policy may
not exist
PRICE.pricingPolicy?.startsWith('COST_')
// Zero prices
PRICE.regularPrice == 0
// Tag check
PRICE.tag == 'special'

SkuPrice object
being evaluated

SKU String

// match
SKU == 'ABC'
// partial match e.g. ABC-0001, ABC-0002
SKU.startsWith('ABC')
// partial match e.g. 00001-ABC, 00020-ABC,
XYZ-ABC
SKU.endsWith('-ABC')

SKU code of
currently
evaluated price

Functions

Function Return
type

Parameter
0

Parameter
1

Example

hasProductAttribute boolean String (SKU
code)

String
(Attribute
code)

hasProductAttribute(SKU, 'ONSALE')

productAttributeValue String String (SKU
code)

String
(Attribute
code)

productAttributeValue(SKU, 'ONSALE') == 'Y'

isSKUofBrand boolean String (SKU
code)

String Array
(Brand
names)

// Check for single brand
isSKUofBrand(SKU, 'HP')
// Check for multiple brands
isSKUofBrand(SKU, 'HP', 'Lenovo')

isSKUinCategory boolean String (SKU
code)

String Array
(Category
code)

// Check for single category
isSKUinCategory(SKU, 'Notebooks')
// Check for multiple categories
isSKUinCategory(SKU, 'Notebooks', 'Accessories', 'Desktop')

product Product String (SKU
code)

product(SKU).name == 'E73'

productSku ProductSKU String (SKU
code)

productSku(SKU).name == 'E73'

brand Brand String (SKU
code)

brand(SKU).name == 'HP'

Price rules tester

Price rules management section includes price rules tester function which allows to run the configured rules on a set of SKU code and allow
you to see the exact result of the calculations. You can also set the time variable to see how the rules behave in different time periods which
is ideal for testing how the rules are evaluated say in seasonal sales and how calculations are performed with time sensitive rules and time
sensitive raw (input) prices.

Price Rules Management

Working example

Business scenario

Given typical use cases described above suppose we have price import feeds available from our suppliers and we are able to receive buying
 prices (BP) and (RRP). Suppose that our BP are provided as NET (without tax) and RRP as GROSS (taxin recommended retail prices

included) and our basic price view for web shop is GROSS prices.

Our marketing strategy for price would be to utilise both types of raw prices and devise a strategy based on the following rules:

Notebooks (products in category 'notebooks') should be sold as 15% margin from BP
Lenovo brand products should be sold as 5% discount from RRP
We do not sell products from mobile category (say we receive products in PIM feed but we do not want to sell them in our shop)

Price import

Raw prices can be imported utilising the CSV import facility available as standard. Auto import listener job can be configured to pick up raw
prices CSV import files at designated time.

However we do not want to expose these prices on the front end as both RRP and especially BP are not meant to be accessible by
customers. Therefore we will use a special (this is an optional data field that exists on every price and if set will only be visible topolicy
customers that have this policy set on their profile).

Recommended usage for BP policy is . For example if you FF code is MAIN, then the BR pricing policy field'COST_' + fulfilment centre code
should be filled in with . If you are following this convention then the BP prices will be automatically be resolved for the itemsCOST_MAIN
that your customer purchases and will be visible in JAM's order view (provided you have access to this).

Similarly to BR, RRP policy could be set to .'RRP_' + fulfilment centre code

Therefore the raw prices import file would look something like this (this is standard format for skuprices.xml import descriptor):

SKU code Shop code currency quantity list price sale price valid from valid to tag pricing policy ref

NB-0001 SHOPX EUR 1 500 COST_MAIN

NB-0001 SHOPX EUR 1 750 RRP_MAIN

NB-0002 SHOPX EUR 1 520 COST_MAIN

NB-0002 SHOPX EUR 1 700 RRP_MAIN

LE-0001 SHOPX EUR 1 430 COST_MAIN

LE-0001 SHOPX EUR 1 580 RRP_MAIN

MOB-0001 SHOPX EUR 1 250 COST_MAIN

MOB-0001 SHOPX EUR 1 410 RRP_MAIN

...

Price rules

We setup the following price rules that reflect our business requirements:

Code Rank Eligibility condition Action Margin
Percent

NOSALE 1

(PRICE.pricingPolicy == 'COST_MAIN') &&
(isSKUinCategory(SKU, 'Mobile')

Skip

NB15MARGIN 2

(PRICE.pricingPolicy == 'COST_MAIN') &&
(isSKUinCategory(SKU, 'Notebooks', 'PortablePC')

Calculate 15

LE5DISCOUNT 3

(PRICE.pricingPolicy == 'RRP_MAIN') &&
(isSKUofBrand(SKU, 'Lenovo')

Calculate -5

As you can see we rearranged the rules slightly and given NOSALE rule top rank, because this is the most fundamental rule and any price
which matches this condition should be ignored as we do not sell these product and if no price is generated this product will not appear in the
front end (all products must have a valid price unless they are set as SHOWROOM availability).

Next NB15MARGIN acts only on prices whose pricing policy is COST_MAIN and SKU is in notebook categories. If the price being evaluated
satisfies this condition the calculation action is applied to generate a price with 15% margin and tax added to the result. Effectively we convert
our BP which was NET into customer end price as GROSS (including tax). Say tax for this type of products is 20% then the calculation for
NB-0001 would be (500 * (1 + 15/100)) * (1 + 20/100) = 690

Last rule LE5DISCOUNT act only on prices whose pricing policy is RRP_MAIN and is of Lenovo brand. The calculation for LE-0001 would
be (410 * (1 + (-5)/100)) = 389.50

The import file can be single file, or can be broken into several files (e.g. BP and RRP separate) or can be any parts of the BP/RRP
set or a mix. In terms of import this is not relevant as long as all columns are specified correctly.

Above is the standard import for price file. It is possible to configure own format for the import descriptor including only columns you
need (even on per shop basis). See documentation for more detailsimport/export

The tax applied would be default tax for given product. This particular example works in VAT type systems were tax for products is
deterministic. For US/Canada taxation we recommend using NET prices

https://docs/display/YD/Import+and+Export

Important to mention is that Lenovo notebooks would be calculated using NB15MARGIN rule as it has higher rank and will be
applied first. So rules should be arranged by rank in such a way to produce correct prices. The question is with this scenario, what
is the right rule to apply NB15MARGIN (because it is a notebook product) or LE5DISCOUNT (because it is of brand Lenovo).
These types of questions can only be answered by marketing manager and thus it is up to them to arrange these rules in the
correct ranking.

	Price rules

